Private
Public Access
1
0

add hot Chunk reload
All checks were successful
Dynamic Branch Deploy / build-and-deploy (push) Successful in 2m27s

This commit is contained in:
Sebastian Unterschütz
2025-11-30 12:33:04 +01:00
parent 9e1fb7e9df
commit a05e79f0d1
4 changed files with 124 additions and 123 deletions

156
README.md
View File

@@ -1,11 +1,12 @@
# **🏃 Escape the Teacher** # **🏃 Escape the Teacher**
**A server-authoritative 2D endless runner built with Go, Redis, and JavaScript.** **A high-performance, server-authoritative 2D endless runner built with Go, Redis, and WebSockets.**
## **📖 About the Project** ## **📖 About the Project**
"Escape the Teacher" is a high-performance web game developed as a school project. You play as a student caught cheating, running away from an angry teacher. The game features increasing difficulty, power-ups, boss phases, and a competitive global leaderboard. "Escape the Teacher" is a web game developed as a school project. You play as a student caught cheating, running away from an angry teacher. The game features increasing difficulty, power-ups, boss phases, and a competitive global leaderboard.
Unlike typical browser games, this project implements **anti-cheat architecture** usually found in multiplayer RTS or FPS games. The browser does not decide if you survived; the server does.
Unlike typical browser games, this project implements **competitive multiplayer architecture** usually found in games like *Agar.io* or FPS titles. The browser is just a "dumb" terminal; the server simulates the entire world.
## **✨ Features** ## **✨ Features**
@@ -18,129 +19,114 @@ Unlike typical browser games, this project implements **anti-cheat architecture*
* **Power-Ups:** * **Power-Ups:**
* 🛡️ **Godmode:** Survives 3 hits. * 🛡️ **Godmode:** Survives 3 hits.
***Baseball Bat:** Eliminates the next teacher obstacle. ***Baseball Bat:** Eliminates the next teacher obstacle.
* 👟 **Jumpboots:** Grants higher jumping power for a limited time. * 👟 **Jumpboots:** Grants higher jumping power.
* 💰 **Coins:** Bonus points (visual score only, does not affect game speed). * 💰 **Coins:** Bonus points.
* **Dynamic Backgrounds:** Environment changes as you progress. * **Level Editor:** Custom chunks (platforms, enemies) can be designed in a secure Admin UI and are streamed into the game live.
* **Boss Phases:** Every 1500 ticks, special boss enemies spawn. * **Juice:** Particle effects and retro sound system.
### **📱 Mobile First**
* Fully responsive Canvas rendering (Letterboxing).
* Touch gestures (Swipe to crouch).
* "Rotate Device" enforcement for optimal gameplay.
### **🛡️ Security & Admin** ### **🛡️ Security & Admin**
* **Admin Panel:** Password-protected (/admin) interface. * **Server-Authoritative:** Physics runs on the server. Cheating (speedhack, godmode) is impossible.
* **Moderation:** Review and delete leaderboard entries. * **Admin Panel:** Create levels, manage badwords, and moderate the leaderboard.
* **Badword Filter:** Automatic blocking of inappropriate names using Redis Sets. * **Proof System:** Players receive an 8-character "Claim Code" to prove their high score offline.
* **Proof System:** Players receive an 8-character "Claim Code" to prove their high score to the teacher.
## **🏗️ Technical Architecture** ## **🏗️ Technical Architecture**
The core philosophy is **"Server-Authoritative, Client-Predicted"**. We moved from a traditional HTTP-Request model to a **Realtime Streaming Architecture**.
1. **Frontend (JS):** Captures inputs and renders the game state immediately (Client-Side Prediction) to ensure zero input lag. It sends input logs to the server in chunks. 1. **Backend (Go):**
2. **Backend (Go):** Validates the inputs by re-simulating the game physics tick-by-tick. * Runs the physics simulation at a fixed **20 TPS (Ticks Per Second)**.
3. **Database (Redis):** Stores active sessions, RNG states, and leaderboards (Sorted Sets). * Generates level segments ("Chunks") 5 seconds into the future.
* Streams object positions via **WebSockets** to the client.
2. **Frontend (JS):**
* **Client-Side Prediction:** Inputs are applied immediately for zero-latency feel.
* **Buffering:** Incoming server data is buffered and played back smoothly.
* **Interpolation:** Although physics runs at 20 FPS, the game renders at 60+ FPS by interpolating positions (`lerp`).
3. **Database (Redis):**
* Stores active sessions, highscores, and custom level chunks.
### **Tech Stack** ### **Tech Stack**
* **Backend:** Go (Golang) 1.21+ * **Backend:** Go (Golang) 1.22+ (`gorilla/websocket`)
* **Frontend:** Vanilla JavaScript (Canvas API), CSS3 * **Frontend:** Vanilla JavaScript (Canvas API)
* **Database:** Redis * **Database:** Redis
* **Containerization:** Docker (Multi-Stage Build: Node Minifier \-\> Go Builder \-\> Alpine Runner) * **Containerization:** Docker (Multi-Stage Build)
* **Orchestration:** Kubernetes (Deployment, Service, Ingress) * **Orchestration:** Kubernetes
## **🔧 Development Challenges & Solutions** ## **🔧 Engineering Challenges & Solutions**
Developing a cheat-proof game for the web came with significant technical hurdles. Here is how we solved them: ### **1. The "Netflix" Approach (Streaming vs. RNG)**
* **Problem:** Syncing Random Number Generators (RNG) between Client and Server caused "Butterfly Effects" where one wrong number broke the whole game state.
* **Solution:** **Streaming.** The client no longer generates anything. The server generates objects in the future and streams them into a buffer on the client. The client simply plays back what it receives.
### **1\. The "Butterfly Effect" (RNG Desynchronization)** ### **2. Lag Compensation & RTT**
* **Problem:** If the internet lags, the server's objects appear too late on the client, causing "Ghost Kills".
* **Solution:** **RTT (Round Trip Time) Measurement.** The client constantly measures the Ping. Incoming objects are visually shifted based on latency (`Latency * Speed`), so they appear exactly where they are on the server.
* **Problem:** JavaScript's Math.random() and Go's rand implementations are different. Even if seeded with the same number, they produce different sequences. This caused "Ghost Objects" (Server spawns a teacher, Client spawns a coin). ### **3. Low Tick-Rate & Interpolation**
* **Solution:** We implemented a custom **Linear Congruential Generator (LCG)** in both languages. * **Problem:** To save server CPU, we run physics at only **20 TPS**. This usually looks choppy (like a slideshow).
* **The Tricky Part:** JavaScript uses 64-bit Floating Point numbers for everything, while Go uses strict types. Math operations drifted apart after a few hundred iterations. * **Solution:** **Linear Interpolation.** The rendering loop runs at 60/144 FPS and calculates the visual position between two physics ticks. The game looks buttery smooth despite low server load.
* **Fix:** We forced JavaScript to use BigInt to simulate 32-bit integer overflows exactly like Go's uint32.
### **2\. Floating Point Drift & Spawning** ### **4. "Instant" Death**
* **Problem:** Waiting for the server to confirm "You died" feels laggy.
* **Problem:** We initially spawned objects based on pixel positions (if x \< 800). Due to floating point precision errors, the client sometimes calculated 799.99 (Spawn\!) while the server calculated 800.01 (Wait\!). This desynchronized the RNG state immediately. * **Solution:** **Optimistic Client Death.** The client detects collisions locally and stops the game visually (`Game Over`). It sends a `DEATH` signal to the server, which then validates and saves the highscore.
* **Solution:** **Tick-Based Spawning.** We decoupled spawning from spatial positions. The game now decides: *"The next object spawns at Tick 500"* rather than *"at Pixel 1200"*. Integers don't drift.
### **3\. Logic-Score Coupling**
* **Problem:** Initially, game speed and boss phases depended on the *Score*. When we added Coins (+2000 Points), the client's score jumped instantly, speeding up the game on the client side before the server acknowledged the coin pickup. This caused massive desyncs.
* **Solution:** We decoupled logic from the visual score. Game difficulty now depends strictly on **"Ticks Alive" (Time)**, which cannot be manipulated by picking up items.
### **4\. Physics Tunneling (High Speed Collisions)**
* **Problem:** At high speeds, the player could move 20 pixels per frame. If an obstacle was only 15 pixels wide, the player effectively "teleported" through it without triggering a collision.
* **Solution:** **Continuous Collision Detection (CCD).** We extend the hitbox of obstacles dynamically based on their current speed (width \+ speed).
### **5\. "Ghost Hits" (The CCD Side Effect)**
* **Problem:** The CCD fix caused a new issue where the extended hitbox would hit the player *after* they had already jumped over the obstacle (hitting them from behind).
* **Solution:** A **"Passed Check"**. Before checking collisions, we verify if the obstacle's right edge is already physically behind the player's left edge. If so, collision is ignored.
## **🚀 Getting Started** ## **🚀 Getting Started**
### **Using Docker (Recommended)** ### **Using Docker (Recommended)**
This project includes a production-ready Dockerfile and docker-compose.yml.
1. **Clone the repository:** 1. **Clone the repository:**
git clone \[https://git.zb-server.de/ZB-Server/it232Abschied.git\](https://git.zb-server.de/ZB-Server/it232Abschied.git) ```bash
git clone [https://git.zb-server.de/ZB-Server/it232Abschied.git](https://git.zb-server.de/ZB-Server/it232Abschied.git)
cd it232Abschied cd it232Abschied
```
2. Configure Environment (Optional): 2. **Run:**
Edit docker-compose.yml to set your admin credentials: ```bash
environment: docker-compose up --build -d
\- ADMIN\_USER=teacher ```
\- ADMIN\_PASS=secret123
3. **Run:** 3. **Play:** Open `http://localhost:8080`
docker-compose up \--build \-d 4. **Admin:** Open `http://localhost:8080/admin` (User: `lehrer`, Pass: `geheim123`)
4. **Play:** Open http://localhost:8080 ### **Local Development**
### **Local Development (Go & Redis)**
1. Start Redis: 1. Start Redis:
docker run \-d \-p 6379:6379 redis:alpine ```bash
docker run -d -p 6379:6379 redis:alpine
```
2. Start the Server: 2. Start the Server:
```bash
go run . go run .
```
*(Note: Use go run . to include all files, not just main.go)*
## **📂 Project Structure** ## **📂 Project Structure**
```
. .
├── k8s/ \# Kubernetes manifests ├── k8s/ \# Kubernetes manifests
├── static/ \# Frontend files ├── static/ \# Frontend files
│ ├── assets/ \# Images & Sprites │ ├── assets/ \# Images & Audio
│ ├── fonts/ \# Local GDPR-compliant fonts │ ├── js/ \# Game Engine
│ ├── js/ \# Modular Game Engine │ ├── audio.js \# Sound Manager
│ │ ├── config.js \# Constants │ │ ├── logic.js \# Physics & Buffer Logic
│ │ ├── logic.js \# Physics & Collision │ │ ├── render.js \# Drawing & Interpolation
│ │ ├── network.js \# Server-Sync │ │ ├── network.js \# WebSocket & RTT Sync
│ │ └── ... │ │ └── ...
│ ├── index.html \# Entry Point │ ├── index.html \# Entry Point
│ └── style.css \# Retro Design │ └── style.css \# Styling
├── secure/ \# Protected Admin Files ├── secure/ \# Protected Admin Files (Editor)
├── main.go \# Go Server Entrypoint ├── main.go \# HTTP Routes & Setup
├── simulation.go \# Server-side Physics Engine ├── websocket.go \# Game Loop & Streaming Logic
├── rng.go \# Deterministic RNG ├── simulation.go \# Physics Core
├── types.go \# Data Structures ├── types.go \# Data Structures
── Dockerfile \# Multi-Stage Build ── Dockerfile \# Multi-Stage Build
└── ... ```
## **📜 Legal** ## **📜 Legal**
This is a non-commercial educational project. This is a non-commercial educational project.
* **Privacy:** No tracking cookies.
* **Assets:** Font "Press Start 2P" hosted locally. Sounds generated via bfxr.net.
* **Privacy:** No tracking cookies are used. Highscores are stored in Redis; local scores in LocalStorage. **Run for your grade! 🏃💨**
* **Assets:** Font "Press Start 2P" is hosted locally.
**Good luck escaping\! 🏃💨**

View File

@@ -63,25 +63,37 @@ func initGameConfig() {
} }
log.Println("✅ Config mit Powerups geladen") log.Println("✅ Config mit Powerups geladen")
loadChunksFromRedis() defaultConfig.Chunks = loadChunksFromRedis()
} }
func loadChunksFromRedis() { func loadChunksFromRedis() []ChunkDef {
// Gleiche Logik wie im Handler, aber speichert es in die globale Variable
if rdb == nil { if rdb == nil {
return return []ChunkDef{}
} // Falls Redis noch nicht da ist }
ids, _ := rdb.SMembers(ctx, "config:chunks:list").Result() ids, err := rdb.SMembers(ctx, "config:chunks:list").Result()
sort.Strings(ids) // WICHTIG if err != nil {
log.Println("Redis: Keine Chunks geladen")
return []ChunkDef{}
}
sort.Strings(ids)
var loadedChunks []ChunkDef
var chunks []ChunkDef
for _, id := range ids { for _, id := range ids {
val, _ := rdb.Get(ctx, "config:chunks:data:"+id).Result() val, err := rdb.Get(ctx, "config:chunks:data:"+id).Result()
if err == nil {
var c ChunkDef var c ChunkDef
json.Unmarshal([]byte(val), &c) json.Unmarshal([]byte(val), &c)
chunks = append(chunks, c) c.ID = id
loadedChunks = append(loadedChunks, c)
} }
defaultConfig.Chunks = chunks }
log.Printf("📦 %d Custom Chunks geladen", len(chunks))
// Log nur beim Server-Start (wenn defaultConfig leer ist), sonst spammt es
if len(defaultConfig.Chunks) == 0 {
log.Printf("📦 Lade %d Chunks aus Redis", len(loadedChunks))
}
return loadedChunks
} }

View File

@@ -33,6 +33,8 @@ type SimState struct {
// Anti-Cheat // Anti-Cheat
LastJumpDist float64 LastJumpDist float64
SuspicionScore int SuspicionScore int
Chunks []ChunkDef
} }
// ============================================================================ // ============================================================================

View File

@@ -74,6 +74,7 @@ func handleWebSocket(w http.ResponseWriter, r *http.Request) {
Ticks: 0, Ticks: 0,
PosY: PlayerYBase, PosY: PlayerYBase,
NextSpawnTick: 0, NextSpawnTick: 0,
Chunks: loadChunksFromRedis(),
} }
// Channel größer machen, damit bei Lag nichts blockiert // Channel größer machen, damit bei Lag nichts blockiert
@@ -246,10 +247,10 @@ func generateFutureObjects(s *SimState, tick int, speed float64) ([]ActiveObstac
if tick >= s.NextSpawnTick { if tick >= s.NextSpawnTick {
spawnX := SpawnXStart spawnX := SpawnXStart
chunkCount := len(defaultConfig.Chunks) chunkCount := len(s.Chunks)
if chunkCount > 0 && s.RNG.NextFloat() > 0.8 { if chunkCount > 0 && s.RNG.NextFloat() > 0.8 {
idx := int(s.RNG.NextRange(0, float64(chunkCount))) idx := int(s.RNG.NextRange(0, float64(chunkCount)))
chunk := defaultConfig.Chunks[idx] chunk := s.Chunks[idx]
for _, p := range chunk.Platforms { for _, p := range chunk.Platforms {
createdPlats = append(createdPlats, ActivePlatform{X: spawnX + p.X, Y: p.Y, Width: p.Width, Height: p.Height}) createdPlats = append(createdPlats, ActivePlatform{X: spawnX + p.X, Y: p.Y, Width: p.Width, Height: p.Height})